Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Med Virol ; 93(12): 6671-6685, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1544318

RESUMEN

Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a wide spectrum of syndromes involving multiple organ systems and is primarily mediated by viral spike (S) glycoprotein through the receptor-binding domain (RBD) and numerous cellular proteins including ACE2, transmembrane serine protease 2 (TMPRSS2), kidney injury molecule-1 (Kim-1), and neuropilin-1 (NRP-1). In this study, we examined the entry tropism of SARS-CoV-2 and SARS-CoV using S protein-based pseudoviruses to infect 22 cell lines and 3 types of primary cells isolated from respiratory, urinary, digestive, reproductive, and immune systems. At least one cell line or type of primary cell from each organ system was infected by both pseudoviruses. Infection by pseudoviruses is effectively blocked by S1, RBD, and ACE2 recombinant proteins, and more weakly by Kim-1 and NRP-1 recombinant proteins. Furthermore, cells with robust SARS-CoV-2 pseudovirus infection had strong expression of either ACE2 or Kim-1 and NRP-1 proteins. ACE2 glycosylation appeared to be critical for the infections of both viruses as there was a positive correlation between infectivity of either SARS-CoV-2 or SARS-CoV pseudovirus with the level of glycosylated ACE2 (gly-ACE2). These results reveal that SARS-CoV-2 cell entry could be mediated by either an ACE2-dependent or -independent mechanism, thus providing a likely molecular basis for its broad tropism for a wide variety of cell types.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Tracto Gastrointestinal/virología , Genitales/virología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Sistema Inmunológico/virología , Neuropilina-1/metabolismo , Sistema Respiratorio/virología , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Internalización del Virus , Western Blotting , COVID-19/metabolismo , COVID-19/virología , Línea Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Tracto Gastrointestinal/citología , Genitales/citología , Humanos , Sistema Inmunológico/citología , Sistema Respiratorio/citología
2.
J Infect Dis ; 223(11): 1842-1854, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1258777

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) patients manifest with pulmonary symptoms reflected by diffuse alveolar damage (DAD), excessive inflammation, and thromboembolism. The mechanisms mediating these processes remain unclear. METHODS: We performed multicolor staining for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins and lineage markers to define viral tropism and lung pathobiology in 5 autopsy cases. RESULTS: Lung parenchyma showed severe DAD with thromboemboli. Viral infection was found in an extensive range of cells including pneumocyte type II, ciliated, goblet, club-like, and endothelial cells. More than 90% of infiltrating immune cells were positive for viral proteins including macrophages, monocytes, neutrophils, natural killer (NK) cells, B cells, and T cells. Most but not all infected cells were angiotensin-converting enzyme 2 (ACE2) positive. The numbers of infected and ACE2-positive cells are associated with extensive tissue damage. Infected tissues exhibited high levels of inflammatory cells including macrophages, monocytes, neutrophils, and NK cells, and low levels of B cells but abundant T cells consisting of mainly T helper cells, few cytotoxic T cells, and no regulatory T cells. Robust interleukin-6 expression was present in most cells, with or without infection. CONCLUSIONS: In fatal COVID-19 lungs, there are broad SARS-CoV-2 cell tropisms, extensive infiltrated innate immune cells, and activation and depletion of adaptive immune cells, contributing to severe tissue damage, thromboemboli, excess inflammation, and compromised immune responses.


Asunto(s)
COVID-19/patología , Pulmón/patología , SARS-CoV-2/fisiología , Tropismo Viral , Adulto , Anciano , COVID-19/inmunología , COVID-19/virología , Femenino , Humanos , Inmunidad Innata , Pulmón/citología , Pulmón/inmunología , Pulmón/virología , Masculino , Persona de Mediana Edad , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/patología , Alveolos Pulmonares/virología , Tropismo Viral/inmunología
3.
Advanced Materials ; 33(7):2170046, 2021.
Artículo en Inglés | Wiley | ID: covidwho-1086253

RESUMEN

In article number 2006647, Rahul Panat and co-workers report the development of a 10-second COVID-19 antibody test that represents the fastest detection of this pathogen biomarker. The test uses an electrochemical cell consisting of aerosol jet nanoprinted 3D micropillar electrodes coated with reduced graphene oxide and viral antigens. This generic platform could be a game-changer in controlling the spread of infectious diseases during pandemics.

4.
Adv Mater ; 33(7): e2006647, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-985908

RESUMEN

Rapid diagnosis is critical for the treatment and prevention of diseases. An advanced nanomaterial-based biosensing platform that detects COVID-19 antibodies within seconds is reported. The biosensing platform is created by 3D nanoprinting of three-dimensional electrodes, coating the electrodes by nanoflakes of reduced-graphene-oxide (rGO), and immobilizing specific viral antigens on the rGO nanoflakes. The electrode is then integrated with a microfluidic device and used in a standard electrochemical cell. When antibodies are introduced on the electrode surface, they selectively bind with the antigens, changing the impedance of the electrical circuit which is detected via impedance spectroscopy. Antibodies to SARS-CoV-2 spike S1 protein and its receptor-binding-domain (RBD) are detected at a limit-of-detection of 2.8 × 10-15 and 16.9 × 10-15 m, respectively, and read by a smartphone-based user interface. The sensor can be regenerated within a minute by introducing a low-pH chemistry that elutes the antibodies from the antigens, allowing successive sensing of test samples using the same sensor. Sensing of S1 and RBD antibodies is specific, which cross-reacts neither with other antibodies such as RBD, S1, and nucleocapsid antibody nor with proteins such as interleukin-6. The proposed sensing platform could also be useful to detect biomarkers for other infectious agents such as Ebola, HIV, and Zika.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Electrodos , Grafito/química , Nanotecnología/métodos , Aerosoles , Antígenos Virales/inmunología , Técnicas Biosensibles , Espectroscopía Dieléctrica , Técnicas Electroquímicas , Humanos , Concentración de Iones de Hidrógeno , Nanoestructuras , Impresión Tridimensional , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA